Pruning Neural Networks with Distribution Estimation Algorithms

نویسنده

  • Erick Cantú-Paz
چکیده

This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments considered a feedforward neural network trained with standard backpropagation and 15 public-domain and artificial data sets. In most cases, the pruned networks seemed to have better or equal accuracy than the original fully-connected networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found large differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Using neural network to estimate weibull parameters

As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit

Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003